
Eurasia Journal of Mathematics, Science & Technology Education, 2015, 11(1), 17-23

Copyright © 2015 by iSER, International Society of Educational Research
ISSN: 1305-8223

Delivering Advanced Methods
in Mathematical Programming to
Students of All Disciplines Using
Abstraction, Modularity and
Open-Ended Assignments

Elishai Ezra & Yaakov Nahmias
The Hebrew University of Jerusalem, ISRAEL

Received 24 September 2014; accepted 29 December 2014

The advent of integrated multidisciplinary research has given rise to some of the most
important breakthroughs of our time, but has also set significant challenges to the current
educational paradigm. Current academic education often limits cross-discipline discussion,
depends on close-ended problems, and restricts utilization of interdisciplinary methods.
“Advanced Methods in Mathematical Programming” is a new course developed at the
Hebrew University of Jerusalem. We used MATLAB as the course platform, exploiting
the software’s high levels of abstraction and modularity to teach network analysis, signal
processing, module-oriented design, and mathematical modeling to students of all
disciplines. Enrollment included students from different disciplines ranging from
computer science to psychology. In their final projects, students presented novel ways of
approaching classic disciplinary problems.

Keywords: MATLAB, interdisciplinary education, multidisciplinary education, trans
disciplinary education

INTRODUCTION

Academic discipline is traditionally defined by a set
of theories, methods, and content, which form discrete
and autonomous fields, such as biology or physics,
defining a structure of knowledge (Becher 1981; Janice
1976; Squires 1992). This definition gives structure to
current university settings, where departments are
institutionalized and educational pathways standardized.
Accordingly, student views about what is known, what
is valued, and what is worthy of investigation are
confined to these well-defined “boxes of knowledge”
(Devlin 2007). One solution to this problem was to

embrace a multidisciplinary education model where
students are required to take elective courses from
disciplines other than their own. While validating the
value of multidisciplinary education, this approach
embraces the entrenchment of disciplines and rarely
encourages cross-discipline discussion or integration
(Petrie 1976). Although the borders lining each
discipline are generally agreed upon, they are often
permeable. Indeed, the indispensable need to bridge
different disciplines is attested to by the emergence of
interdisciplinary education (Nicolescu 1999, Morgan &
Park 2012). To delineate the bridges between disciplines
and their dynamics, Geoffrey Squires (Squires 1992)
described academic disciplines in terms of three
dimensions: framework, concerns, and methods. He
claims that the formation of bridges along the
discipline’s dimensions reflects the evolvement of
disciplines. Interdisciplinary bridges between
frameworks can generate new disciplines, such as
bioengineering or astrobiology, while bridges between
concerns can produce different perspectives. For
example, a painting by Giotto can be studied not only

Correspondence to: Prof. Yaakov Nahmias
Grass Center for Bioengineering
The Hebrew University of Jerusalem,
Jerusalem, Israel.
E-mail: ynahmias@cs.huji.ac.il
doi: 10.12973/eurasia.2015.1302a

http://en.wikipedia.org/wiki/Israel

 E. Ezra & Y. Nahmias

18 © 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23

within art history but also within history of religions,
European history, and geometry (Nicolescu 1999).
Bridges between methods can yield new applications,
such as the development of psycho-educational
multimedia technologies (Shavinina 1998), the
utilization of micro-mechanical systems for high-
throughput biological research (Daniel J. Maltman 2010)
and the use of nuclear physics in medicine (Stabin and
Brill 2008). It is clear that in order to construct
interdisciplinary bridges, a multidisciplinary
environment is required. Following the potential impact
of interdisciplinary innovation, a great interest in
multidisciplinary teamwork is apparent in the literature
(Valerie Wilson 2000), from effectiveness in primary
health care (Poulton and West 1993) to productiveness
in innovative engineering (Denton 1997). Moreover, the
history of disciplinary thought suggests that disciplinary
experts actively seek interdisciplinary relationships, to
the point where they arise naturally, realizing the
importance of new perspectives to provide
breakthroughs (Petrie 1976).

Some of the most utilized methods across
disciplines were developed in the fields of mathematics
and computer science. Accordingly, concepts in applied
mathematics and algorithms are taught in a wide

spectrum of disciplinary educational tracks, from
political science (Peters 2005) and psychology (Mosteller
2010), to geology (Fowler 2011) and architecture
(Legendre 2011). Unfortunately, the common academic
didactic approach to mathematical programming often
dismisses abstract concepts, limiting the audience to
students from a narrow spectrum of backgrounds,
neglects active student participation, and evaluates
students using standardized close-ended questions.
While for the core disciplinary courses this didactic
approach might be reasonable, when applied to
delivering interdisciplinary methodologies it is often
summed up with teaching only a few elementary tools.
For example, a course on image processing is seldom
found in the standard educational track of geology
major, although some of the most interesting
developments in the field during the last decade rely on
it (Drury 2004). Likewise, the curriculum of a typical
biology graduate will rarely include a course in
numerical simulation, despite its key role in biological
modeling (Schwartz 2008). In general, transformative
interdisciplinary methods such as network analysis,
signal processing, and mathematical modeling are
excluded from study programs due to their technical
complexity and highly detailed nature (Temur, 2012).
Here, we argue that in order to provide advanced
mathematical tools to students of all disciplines, a
paradigm shift in the fundamental didactic approach is
essential. To that end, we developed an interdisciplinary
course in advanced mathematical programming to
students of all disciplines using the MathWorks®
MATLAB platform.

COURSE DESIGN

Didactic Approach

Our didactic approach was based on four
complementary guidelines: (i) an effort should be made
to create a heterogeneous multidisciplinary class; (ii)
complex technical concepts should be carefully
abstracted; (iii) students should be confronted with
open-ended assignments, and (ix) after each study unit,
students present their results to their peers.

Our main challenge was to design a course that
conveys advanced concepts, generally taught in
discipline-oriented classes, to students from different
backgrounds (1st guideline). We approached this
challenge by using a platform that promotes abstraction
in order to deliver highly detailed methods (2nd
guideline). Encapsulating technical details and exposing
functionalities via a carefully designed interface in a
well-documented environment reduces our main
challenge to deliver the concepts of modular
programming, where discrete functionalities are
integrated into interconnected modules. Considering a

State of the literature

 In current university settings student views about
what is known, what is valued, and what is worthy
of investigation are confined to disciplinary “boxes
of knowledge”

 Current multidisciplinary programs embrace the
entrenchment of disciplines and rarely encourage
cross-discipline discussion or integration.

 The common academic didactic approach to
mathematical programming often dismisses
abstract concepts, limiting the audience to students
from a narrow spectrum of backgrounds, neglects
active student participation, and evaluates students
using standardized close-ended questions.

Contribution of this paper to the literature

 We developed a course in which we deliver
advanced methods in mathematical programming
to a heterogeneous multidisciplinary class.

 In the course, complex technical concepts are
carefully abstracted, students are confronted with
open-ended assignments, and following each study
unit, they present their results to their peers.

 We showed that even when methods are
abstracted and encapsulated, their functionality is
not lost, and students can use them to produce
outstanding innovation.

Mathematical programming

© 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23 19

multidisciplinary environment, no fixed set of questions
could have benefited the entire class. However, students
can approach open-ended assignments (3rd guideline)
using their own perspective, background and
experience. It encouraged students to connect different
modules in order to address their interests, and spurred
independent thought and creativity. Another way of
profiting from the diversity of interests in the class was
enabling students to showcase the way they approached
the assignments (4th guideline). Giving the stage to
students from various backgrounds allowed the class to
experience the multidisciplinary nature of mathematical
programming.

While ongoing coursework focused on specific
methods, in their final project students were given the
liberty to engage a particular problem of their interest
using any advanced mathematical methods (after
approval of a project proposal by the course staff). As
was mentioned, students had a weekly exercise where
they could consult their final projects and assignments
with the course staff.

MathWorks® MATLAB

To efficiently address the 1st guideline, we used
MathWorks® MATLAB as the course platform.
MATLAB is commonly used in computer-assisted
teaching for demonstrations (Bentounsi et al. 2011; De
Magistris 2005; Wright et al. 1999). The software was
designed to provide students with easy access to well-
known algorithms, which previously had to be found in
a forest of scattered numerical libraries. What was
invented in 1970 with approximately 80 linear algebra
functions grew up to 8000 functions program that
integrates computation, visualization, and programming
in an intuitive environment.

MATLAB has a growing family of add-on
application-specific solutions called toolboxes.
Toolboxes encapsulate highly detailed methods and
algorithms, creating abstract specialized boxes with a
clear and well-documented interface. There are
comprehensive collections of MATLAB functions (M-
files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes
are available include image processing, computer vision,
communications systems, neural networks, statistics,
optimization, fuzzy logic, econometrics, trading,
bioinformatics, and many more. Our second focus of
interest in MATLAB was the Simulink family of
products. The Simulink platform encapsulates the
methods required to analyze system dynamics, usually
using differential equations. Simulink provides a graphic
interface where functionalities from different toolboxes
can be interconnected to construct and investigate a
time-dependent evolving system. The great variety of
toolboxes is at the essence of the liberty given to the
students in their final projects.

In our course we taught concepts in network
analysis and visualization using MATLAB’s
bioinformatics toolbox, concepts in image processing
using the image processing and computer vision
toolboxes, and concepts in simulations and modular
design using Simulink.

Study Units

After seeking advice with experts in academia and
industry, we narrowed the list of methods to be taught
to five study units: introduction to mathematical
programming, network analysis and visualization, digital
image processing, simulations and modular design, and
mathematical object-oriented programming (OOP). The

Figure 1. Course timeline

 E. Ezra & Y. Nahmias

20 © 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23

course timeline is shown in Figure 1. The course
awarded three academic credits and consisted of two
hours lecture and one-hour tutorial per week. The only
pre-requisite for registration was basic knowledge in
programming.

Introduction to Mathematical Programming

Since the prerequisites for course enrollment are
limited to previous exposure to basic programming, the
course audience includes students with varying
backgrounds. Hence, a carefully designed introduction is
required. Our approach in this introductory unit is to
deliver basic concepts in mathematical programming,
upon which student will be able to build toward a
deeper understanding of advanced material and toward
the development of their projects. The introductory
section is taught by showcasing examples that put
together, encompass important aspects of the material.
The examples were inspired by the introductory chapter
of the book “Numerical Computing with MATLAB” by
Cleve Moler (Moler 2004). Examples include different
ways of computing the golden ratio and elements in the
Fibonacci sequence. Recursive programming is
examined using the Towers of Hanoi example. Handling
matrices and vectors is examined by showcasing data
encryption and decryption using the Hill Ciper
algorithm. Handling graphics and visualization is
examined by visualizing fractals and different aspects of
Vector Analysis. As for the final exercise for the unit,
students are confronted with a classic dilemma in
numbers theory: the Collatz Conjecture. According to
the course’s 3rd guideline, each student or group of
students are given the freedom to examine the problem
from their own perspective.

Network Analysis and Visualization

First, the wide range of applications suitable for
modeling using networks are showcased via metabolic
pathways, social networks, shipping lanes, the
worldwide web, disease networks, gene networks,
decision making in artificial intelligence algorithms and
structuring motifs in poetry. Core concepts in network
analysis, such as shortest path finding using dijkstra’s
algorithm, computing strongly connected components
(SCC's), search algorithms: Breath First Search (BFS)
and Depth First Search (DFS) and networks
visualization methods such as graphs and heat-maps are
taught using MATLAB’s bioinformatics toolbox. This
great variety of algorithms is taught under a very tight
schedule by using MATLAB’s high level of abstraction,
while concentrating on the applicative aspects of the
materials. For the final exercise for the unit, students are
given the freedom to define any network within their
own field of interest (with a minimum criterion of 15

nodes), analyze it and provide emerging insights.

Digital Image Processing

Students are first introduced with a great variety of
examples for digital image processing: from applications
in the field of space exploration, to analyzing weather
patterns and traffic loads, controlling manufacturing
lines, real-time filtering and image enhancement in
cameras, and medical imaging. Students are presented
with common image processing tasks such as measuring
image features, debluring and noise reduction, features’
extraction, segmentation and identification, edge
detection and contrast control. Afterward, basic
concepts in image processing are examined using
MATLAB’s image processing and computer vision
toolboxes. Emphasis is given to basic digital
representation of binary, gray-scale and color images, as
well as to fundamental point and neighborhood
processing algorithms. An integrative example was given
by the demonstrating of a 3D reconstruction of a
human brain using stacks of 2D MRI slices. For the
unit’s final exercise, students are given the freedom to
choose an image within their own field of interest,
analyze it and provide insights.

Simulations and Modular Design

Fundamentals in simulations and modular design are
taught using MATLAB’s Simulink platform. First,
students are presented with the basics of modular
programming and interface design. In the Simulink
environment, different computational/acquisition
modules can be used and interconnected by dragging
the corresponding box from the Simulink’s library to
the simulation sheet, configuring its properties and
setting the connections. For example, we modeled a
system in which two inputs are summed, after one of
them is introduced into a logic gate, following by an
integrator and an amplifier (See Figure 2).

Two key points in modeling are the notions of
encapsulation and abstraction. MATLAB utilizes this
concept by enabling the programmer to define
subsystems, which hide detailed implementation and
expose functionality via an interface or a mask (inputs
and outputs). In our example, the system is encapsulated
into a subsystem with two inputs and a single output.
Here, one input is connected to a constant source and
the other to a sine wave. The output of the system is
connected to a scope, which allows monitoring the
system development in respect to time. When the
encapsulation is finalized and the interface configured,
an abstracted representation of the system is presented
(Figure 2, bottom). In this section, a great emphasis is
given to the modular design of systems. For the unit’s
final exercise, students build a model of their choice,

Mathematical programming

© 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23 21

simulate it and produce a report of its time-dependent
behavior.

Mathematical Object-Oriented Programming
(OOP)

Although OOP is a well-known and widespread
programming paradigm, few courses teach it using
MATLAB, which was mainly designed for non-
programmers. Nevertheless, MATLAB fully supports
OOP and its compatibility with the general concept of
OOP can be extremely beneficial to advanced users.
Therefore, reviewing this subject was an integral part of
the course curriculum. In this unit, students are
presented with the importance of code reusing and are
introduced with the core concepts of object-oriented
programming and its role in reusing logic. In this unit
we examine the development of a Polynomial class - an
abstract entity of the mathematical representation of a
polynomial equation. After configuring the class’s
properties and methods, such as its canonical
representation, convolution and plotting, a second sub-
class was configured. This sub-class represents a
quadratic equation (second degree polynomial equation),
inherits the polynomial class and expands it toward a
more specific functionality, such as completing the
square. This unit of study is not followed by an exercise
and escorts the students’ efforts in their final projects.

COURSE OFFERING

Course first cycle

The course was first offered in the fall semester of
2013 and was taken by 20 graduate and undergraduate
students. The students came from 10 different
disciplines including: biology, computer engineering,
applied physics, psychology, neurobiology, atmospheric
sciences, chemistry, earth sciences, biophysics, and
physical chemistry. The work presented throughout the
semester highlighted the wide spectrum of subjects and
interests that mathematical programming can
encompass. For example, assignments for the first unit
on networks included sensitivity analysis of the global
submarine communication cable network (real data was
imported from the Tele-Geography database), analysis
of dolphin social network (data was derives from an
academic report regarding a community of 62 dolphins
living off Doubtful Sound), and modeling atmospheric
process using graph theory. The main achievement of
the students was the final project, where groups of 2-3
members engaged a specific challenge of their choice.
Students were given the liberty to choose any of
MATLAB’s toolbox and the number of students who
felt unconstrained to use the various methods they
learned throughout the semester was significant. We
note that students felt comfortable extending their work
to use curve fitting, neural networks, control systems,
digital signal processing, radio frequency, and data

Figure 2. Modeling, encapsulation an abstraction using Simulink®

 E. Ezra & Y. Nahmias

22 © 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23

acquisition toolboxes, which were not taught during the
semester.

At the course’s final event, ten projects were
submitted and presented to a panel of internal and
external staff, and most as all received a positive
feedback on quality and extent. The final projects
included: encryption and decryption of digital data using
optical fibers (computer engineering majors), simulation
of a Hebbian learning process (biology majors),
simulation of behavioral decision using a dynamic
model (psychology majors), simulation of the fly’s visual
system (neurobiology graduates), visualizing the micro-
physical conditions in a cloud (atmospheric sciences
research students), mapping information from TRMM
satellite (earth sciences majors) and simulation of
bacterial colony growth (biophysics majors).

Student Feedback

Seventy percent of the class agreed to participate in
a feedback survey. 93% of the survey participants agreed
that the academic level was appropriate (7% stated it
was too high) and 93% thought that the course pace
was accurate and sufficient (7% stated it was too slow).
Students were asked to grade different aspects of their
academic experience from 1 (lowest) to 20 (highest).
Results are presented in Table 1.

CONCLUSIONS AND FUTURE PERSPECTIVE

The current educational paradigm often limits
discussion between disciplines, is dependent on close-
ended problems, and restricts access to interdisciplinary
methods. This fundamental reality is strongly evident
when teaching highly utilized methods such as network
modeling, image processing, simulations and object-
oriented design to a non-specialized audience.
Therefore, in a heterogeneous class, the current
paradigm restricts the teaching of these methods to
delivering only elementary aspects. Here we present the
design of a new course in mathematical programming,
open to students of all disciplines, offering advanced
training in computational thinking and modeling. The
course is characterized by a heterogeneous
multidisciplinary class, where students are confronted
with open-ended assignments. The study units
encapsulate complex technical issues and expose a
carefully abstracted functionality to the students,

enabling them to utilize advanced methods within their
own field of interest, while requiring extremely limited
prerequisite knowledge. Students are presented with
various algorithms in network analysis such as dijkstra’s
algorithm and strongly connected components (SCC's)
computation; with the fundamentals in image
processing such as digital representation, neighborhood
processing and filtering; with basic practices in modeling
and simulation like modules design, as well as with the
essentials of object-oriented programming. For the first
cycle of the course, enrollment included 20 graduate
students from 10 different disciplines, ranging from
computer science and engineering to atmospheric
sciences and psychology.

Considering the heterogeneity of the class and the
apparent complexity of the material we were pleased to
see that over 90% of the students stated that both
academic level and pace were appropriate. For every
parameter, most of the students gave the maximum
grade of 20. We were particularly pleased to see that the
students acknowledged our efforts to provide them with
tools for creativity and independent thought, a
parameter that received a near perfect grade (18.95/20).
The quality of the submitted projects, which were
presented to a panel of internal and external staff, shows
that our methodology of delivering advanced material to
non-specialized audience can produce great results.

For the next offering of the course, we hope to
extend it to three hours of frontal lecture and one hour
of optional tutorial. We also hope to expand the course
offering beyond the faculty of natural sciences and
mathematics to the departments of economics, business
administration, political science, accounting, and
philosophy.

We believe that teaching advanced mathematical
programming skills in a multidisciplinary setting will
promote open-minded researchers and advance
scientific progress. We showed that even when methods
are abstracted and encapsulated, their functionality is
not lost, and by simply connecting modules in a specific
context, students can produce outstanding innovation.

Acknowledgements

This work was supported by the European Research
Council Starting Grant (TMIHCV 242699)

Table 1. Student Feedback

 Average SD Median Mode

The course provides tools for analysis and independent thinking 18.95 1.23 19.5 20

The course provides knowledge 17.05 2.80 17.5 20
Contribution of the course’s assignments 17.93 2.32 18.5 20
Contribution of the course’s frontal exercise 16.03 3.24 17 20

Mathematical programming

© 2015 iSER, Eurasia J. Math. Sci. Tech. Ed., 11(1), 17-23 23

REFERENCES

Becher, T. (1981). Towards a definition of disciplinary
cultures. Studies in Higher Education, 6(2), 109-122.

Bentounsi, A., Djeghloud, H., Benalla, H., Birem, T., &
Amiar, H. (2011). Computer-Aided Teaching Using
MATLAB/Simulink for Enhancing an IM Course With
Laboratory Tests. Education, IEEE Transactions on, 54(3),
479-491, doi:10.1109/te.2010.2085046.

Daniel J. Maltman, S. A. P. (2010). Developments in three-
dimensional cell culture technology aimed at improving
the accuracy of in vitro analyses. Biochemical Society
transactions, 38(4), 1072-1075.

De Magistris, M. (2005). A MATLAB-based virtual laboratory
for teaching introductory quasi-stationary
electromagnetics. Education, IEEE Transactions on, 48(1),
81-88, doi:10.1109/te.2004.832872.

Denton, H. G. (1997). Multidisciplinary team-based project
work: planning factors. Design Studies, 18(2), 155-170,
doi:http://dx.doi.org/10.1016/S0142-694X(97)85458-
0.

Devlin Marcia, D. M. (2007). Interdisciplinary higher
education: Implications for teaching and learning. Centre
for the Study of Higher Education.

Drury, S. A. (2004). Image Interpretation in Geology: Routledge.
Fowler, A. (2011). Mathematical Geoscience. London: Springer.
Janice M. B., Thomas. M. L. (1976). A Comparative Study of

Patterns of Influence in United States and English
Universitie. Administrative Science Quarterly, 21, 104-129.

Legendre, G. (2011). Mathematics of Space: Architectural Design.
London: Wiley.

Moler, C. (2004). Numerical Computing with MATLAB
MathWorks.

Morgan, B.Y. & Park, S. (2012). Analysis of Teaching
Resources for Implementing an Interdisciplinary
Approach in the K-12 Classroom. Eurasia Journal of
Mathematics, Science and Technology Education, 8(4), 223-232

Mosteller, F. (2010). Learning Theory: Founding
Mathematical Psychology. In S. E. Fienberg, D. C.
Hoaglin, & J. M. Tanur (Eds.), The Pleasures of Statistics
(pp. 31-45): Springer New York.

Nicolescu, B. The transdisciplinary evolution of learning. In
the Annual Meeting of the American Educational Research
Association, 1999

Temur, O. D. (2012). Analysis of Prospective Classroom
Teachers’ Teaching of Mathematical Modeling and
Problem Solving. Eurasia Journal of Mathematics, Science
and Technology Education, 8(2), 83-93

Peters, G. B. (2005). Institutional Theory in Political Science.
London: Continuum.

Petrie, H. G. (1976). Do you see what I see? The
epistemology of interdisciplinary inquiry. Journal of
Aesthetic Education, 10(1), 29-43.

Poulton, B. C., & West, M. A. (1993). Effective
multidisciplinary teamwork in primary health care. J Adv
Nurs, 18(6), 918-925.

Schwartz, R. (2008). Biological Modeling and Simulation.
Cambridge: MIT Press.

Shavinina, L. V. (1998). Interdisciplinary innovation:
psychoeducational multimedia technologies. New Ideas in
Psychology, 16(3), 189-204.

Squires, G. (1992). Interdisciplinarity in higher education in
the United Kingdom. European Journal of Education, 27(3),
201-210.

Stabin, M., & Brill, A. B. (2008). Physics applications in
nuclear medicine: 2007. J Nucl Med, 49(2), 20N-25N,
doi:49/2/20N [pii].

Valerie Wilson, A. P. (2000). Multidisciplinary Teamworking:
Beyond the Barriers? A Review of the Issues Edinburgh:
SCRE.

Wright, C. H. G., Welch, T. B., & Gomes, W. J., III. Teaching
DSP concepts using MATLAB and the TMS320C31
DSK. In Acoustics, Speech, and Signal Processing, 1999.
Proceedings., 1999 IEEE International Conference on, 15-19
Mar 1999 1999 (Vol. 6, pp. 3573-3576 vol.3576).
doi:10.1109/icassp.1999.757615.

